

Engineering Doctorates in the Netherlands

Kees van Hee

London, 1-11-2012

Agenda

- 1. Role of 3^e Cycle Engineering Programmes
 - Differences between PhD and EngD
- 2. The Dutch Programmes
 - History
 - Value propositions
 - Programmes Today
 - Quality Control
- 3. Comparison of Engineering Doctorates

1. Role of 3^e Cycle Engineering Programmes

- 1^e and 2^e cycle of Bologna focus on *learning*
- 3^e cycle focus on a *contribution* to the 'body of knowledge'
- PhD: the contribution is the *scientific result*
- EngD: contribution is an *innovative artefact*
- Artefact is a product, process or system. Either tangible or intangible
- Artefact is the 'solution' to a 'problem'
- The artefact should be designed using scientific methods

Differences between PhD and EngD

	Scientific	Engineering
	Research (PhD)	Research (EngD)
Starting point	Empirical data or	Requirements or
	Hypothesis	Technical Problem
Looking for	Truth	To fulfill Purpose
Outcomes	Theory or	Valuable Artefact
	Knowledge	

2. History of Dutch Programmes

- Started in 1986, because BSc+MSc became 4 years
- In 1997 again BSc=3 and MSc=2
- Students obtain a Professional Doctorate in Engineering Degree (PDEng). Title used since 2004.
- Up to now: 3100 graduates delivered!
- Programmes in the 3 Technical Universities of Delft, Eindhoven and Twente

3TU. School for Technological Design

STAN ACKERMANS INSTITUTE

http://www.3tu.nl/en/education/sai/the_innovation_degree/

The PDEng formula

- Strongly selected master students
- PDEng students are called trainees
- PDEng trainees are employees
- Two year programme:
 - year 1: training in engineering methods and skills
 - year 2: design project in industry supervised by University staff
- Companies are paying for the innovation project (€ 5.000 per month or € 60.000 in total)
- We train top-level engineers to perform an excellent innovation project using state-of-the-art knowledge of the University

Value Proposition for Companies

- If you need a new *product, process or system*, let it be designed by a PDEng-trainee under supervision of a professor!
- Top-design trainees are selected from the best graduates with a masters in engineering.
- Design projects are selected carefully: they must really make a difference to the company and they should be sufficiently innovative for the University.

Value Proposition for Students

- Become a top-designer by 'learning and earning'
- After graduation trainees get many job offers and have better career opportunities
- The programme gives you a career speed up
- PhD is for an academic career and PDEng for an industrial career (CTO is the ultimate goal)

Value Proposition for Universities

- The perfect way for industrial *innovation*
- Knowledge transfer "on the job"
- Inspiration from actual industrial problems
- Source of *income* !

Dutch PDEng programmes

Eindhoven .

- Architectural Design Management Systems ٠
- Automotive Systems Design ٠
- Design and Technology of Instrumentation •
- Information and Communication Technology ٠
- Logistics Management Systems ٠
- Mathematics for Industry •
- **Process and Product Design** ٠
- Software Technology ٠
- **User System Interaction** ٠
- Smart Energy Buildings and Cities ٠
- Healthcare Systems Design ٠
- Delft
 - **BioProcess Engineering** ٠
 - **BioProduct Design** ٠
 - **Chemical Product Design** ٠
 - Comprehensive Design in Civil Engineering ٠
 - **Process and Equipment Design** ٠

Twente

- **Civil Engineering** •
- **Energy and Process Technology** •
- **Robotics** .

Curriculum preparation year

- Personal skills including:
 - Project management
 - Presentation techniques
 - Social skills
 - Entrepreneurship (also 'intrapreneurship')
- Generic engineering methods:
 - Design theory
 - Mathematical modeling
 - Testing
- Advanced domain specific design techniques

Quality control

- Quality of the design *result* More difficult than evaluation of research!!
- Quality of the design process
- For both *criteria* grouped per aspect were defined
- For each criterion one or more *indicators* with an ordinal scale were defined
- No straight jacket, but a help for evaluation committees

Aspects for Assessing Technological Design

- 1. Functionality
- 2. Construction
- 3. Realizability
- 4. Impact
- 5. Presentation

Aspects for assessing Design Process

- 1. Organization and planning
- 2. Problem analysis and solution
- 3. Communication and social skills
- 4. <u>Structure and attitude</u>

3. Comparison with other countries

- 1. UK: EngD programs:
 - 4 years after (3 year) BSc; total time: 7 years
 - May be a MSc is obtained during project
 - Doctoral Training Centers 28 universities
 - Industry pays!
 - In total now ca 3500 degrees
- 2. France: CIFRE doctorate:
 - 3 years after (1 year) MSc+ (3 year) BSc: total: 7 years
 - In an enterprise, that pays ca € 2K per month: total cost: € 142K

Comparison...

- 3. Sweden: licentiate:
 - 2 years program after (2 year) MSc+(3 year BSc); total: 7 years
- 4. The Netherlands: PDEng
 - 2 years program after (2 year) MSc + (3 year) BSc, total: 7 years
 - Second year paid by industry ca € 60K

In all cases: total study takes 7 years!

Towards European Quality Standard

- Common criteria, but different programmes; avoid 'one-size-fits-all'
- <u>Academic criteria</u>:
 - Problem description
 - State-of-the-art
 - Evidence of scientific engagement (publications)
 - Detailed description of the outcome
 - Theoretical or empirical verification
- Industrial criteria:
 - Description of industrial context
 - Analysis of impact of the projected outcome
 - Description of embedding in context
 - Evidence that outcome is innovative
 - Demonstration that outcome is fit for purpose

EngD's: THE Innovation Degrees

